

BioEng 2003 | Fundação Calouste Gulbenkian | 2003.06.26-27

On the requirements of biomedical information tools for health applications: the INFOGENMED case study

Ilídio C. Oliveira¹ (<u>ioliv@ieeta.pt</u>), José Luís Oliveira^{1,2}, Miguel Santos³, F. Martin-Sanchez⁴, A. Sousa Pereira^{1,2}

 ¹ Instituto de Eng^a Electrónica e Telemática de Aveiro (IEETA) | ² Departamento de Electrónica e Telecomunicações, Universidade de Aveiro | ³ Genómica / STAB Vida, Oeiras | ⁴ Instituto de Salud Carlos III (ISCIII), Madrid

Outline

Motivation

Medical and bioinformatics synergy in support of molecular medicine

INFOGENMED in a nutshell

Project goals

Methods

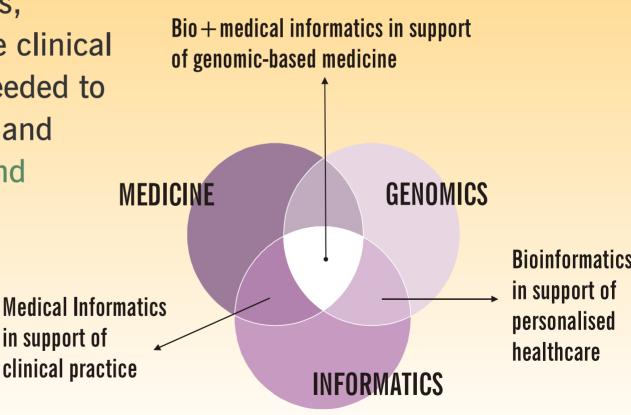
- Identification of health application requirements
- Relevant databases and clinical pathways
- Expected results

A novel life sciences landscape

- New technologies (e.g.: biochips, bioinformatics) and research approaches (e.g.: proteomics, genomics) are revolutionising biomedical research.
- The Human Genome Project is making a unique contribution to the knowledge of the relationships between human genes and physiopathological states.
- A huge wealth of information is being produced
- The integration of genetic information in the clinical environment will give rise to a new clinical practice based on Molecular Medicine and personalised healthcare.

Towards molecular medicine

- Genomic medicine is expected to provide:
 - More precise diagnosis, including genetic tests;
 - Personalized drugs with increased efficiency with minimal inconveniences;
 - Therapy methods acting directly on the genetic code (gene therapy).
- The generalization of molecular medicine requires an increased exchange of knowledge between clinical and biological domains

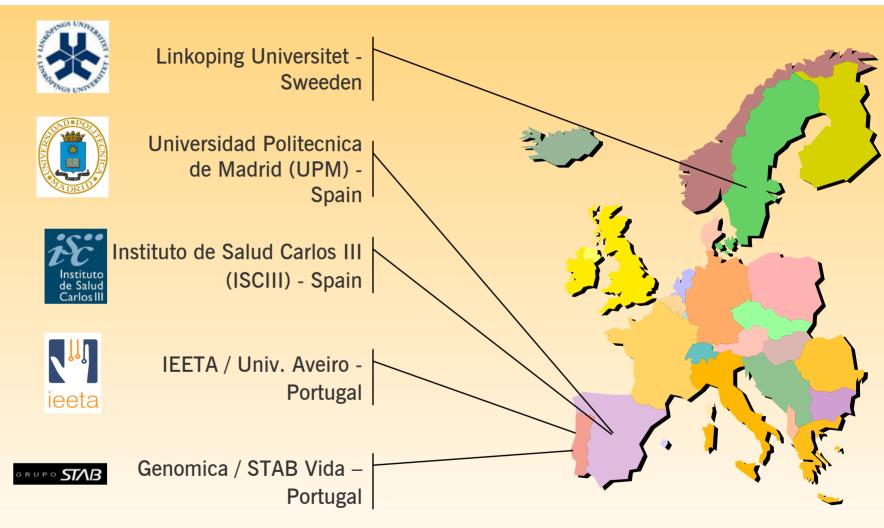

Barriers to knowledge transfer

- Different sources of relevant information are spread (over the Internet)
- Wide range data of formats
- Codification and terminology is not unified, quality is difficult to discern
- Medical coding systems not ready for managing genetic information
- Bioinformatics tools designed for basic research
- Lack of guidance for the physician

The quest for biomedical information tools

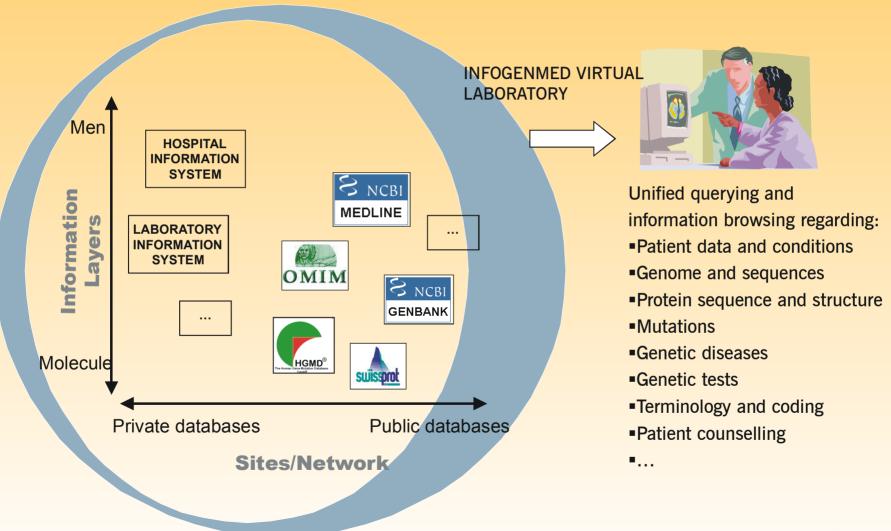
A new bred of information tools, integrated in the clinical workflows, is needed to search, retrieve and relate genetic and clinical data.

in support of


INFOGENMED goals

- Unification of heterogeneous biomedical databases under one virtual system:
 - development of methods and tools to locate, access and integrate distributed (medical and genetic) data;
 - construction of a vocabulary server for the association of medical and genetic concepts;
 - design of a user-friendly interface and development of "clinical pathways" to help users in resorting to the system for the benefit of their practice.
- Validation of the integrated system in the field of rare genetic diseases.

The consortium



Key competences (roles in the project)

Key competences	Medical Informatics / health telematics	Bioinfor- matics	Distributed data integration	Biomedical market	Clinical app.s (rare genetic deseases)
IEETA / Univ. Aveiro - Portugal	•		•		
Universidad Politecnica de Madrid (UPM) - Spain	•		•		
Instituto de Salud Carlos III (ISCIII) - Spain		•			•
Linkoping Universitet - Sweeden	•	•			
Genomica / STAB Vida – Portugal		•		•	

INFOGENMED approach

Health applications' requirements

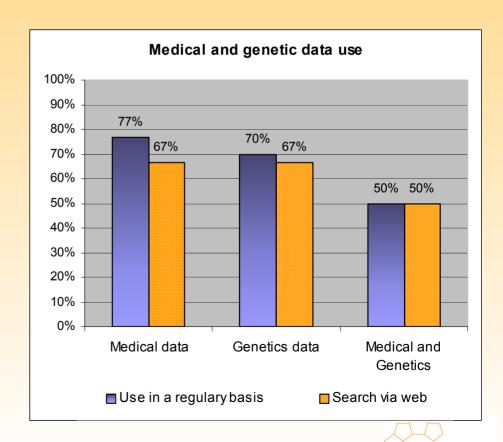
Requirements analysis:

- Experts Panel interviews
 - 10 experts with complementary backgrounds
- User survey questionnaire
 - 30 replies from professionals in biomedical fields
 - http://www.infogenmed.net/survey

Biologist/Biochemist	10
Medical researcher	9
Medical doctor (practitioner)	3
Bioinformatician	2
Computer scientist	2
Other (Pharmacist, etc.)	4
Total	30

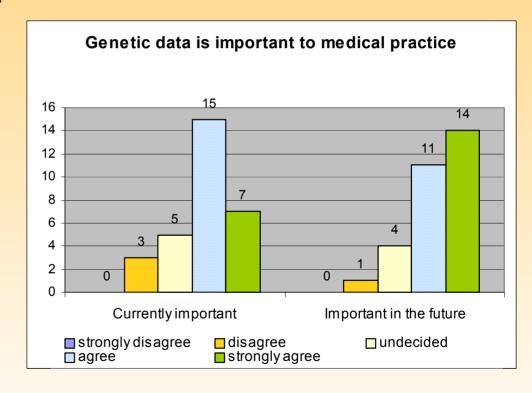
Experts Panel – key inputs

- Too much time is wasted in searches and databases hopping. Information hubs are a definite plus.
- Nomenclature mismatches hinder the seamless use of current biomedical information sources.
 - Across different domains of knowledge (e.g.: clinical and biological)
 - Across databases with semantic related contents (e.g.: no standard nor complete ontology do describe the existing biological data).
- Tools should help users to navigate information at different levels
 - user-friendly interfaces
 - summary and detailed views of data as appropriate


Experts Panel – key inputs 2

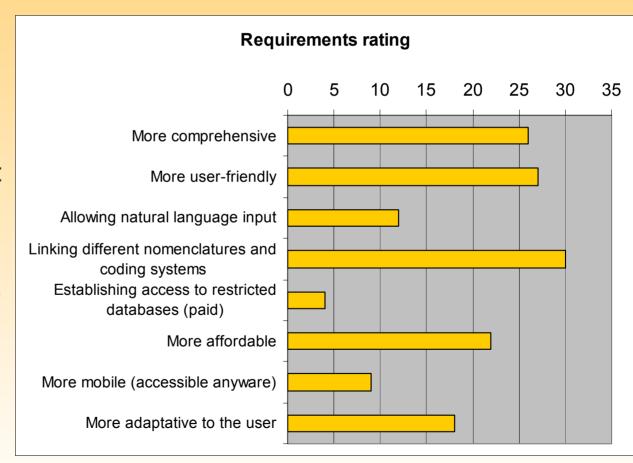
- Support for collaboration between experts can be a plus
- Counselling will be important to approach genetics-related issues with patients
- Genetic testing is expected to become a generalized practice in the near future
 - information tools must be prepared

Users survey – key inputs


- 77% search for medical data in a regularly basis
- Genetic data is sought by 70% of respondents
- Note that half of the respondents use both kinds of data regularly
- Almost all respondents that actively seek for biomedical information use the Internet.

infogenmed

Users survey – key inputs 2


- Currently, there's a real contribution but, still, somewhat moderate
- However, concerning the future role of genetics in medicine, there is a strong conviction that it will play a decisive role.

Users survey – key inputs 3

- The ability to link different vocabularies and coding systems rates as the top requirement
- The need for tools that are easy to use was is also stressed.
- Tools available for free is a trend that seams to gain importance among the biomedical community

Sources of Genetic Information

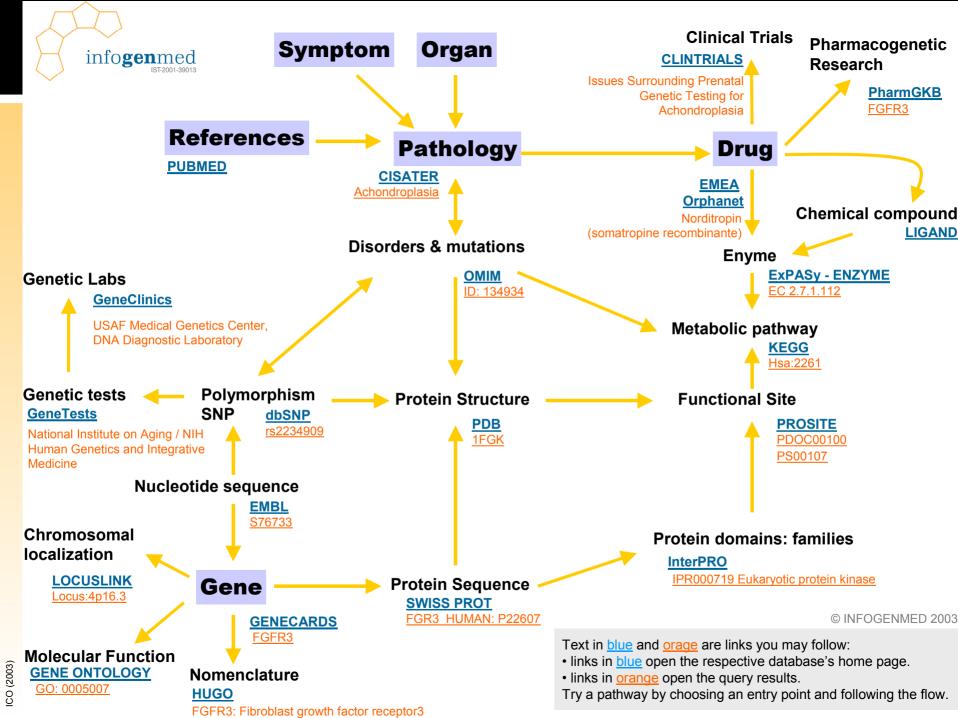
- Genome and sequence databases
 - EMBL
- Protein sequence and structures
 - PDB, SwissProt
- Mutations
 - Central variation databases HGMD
 - Single Locus Databases
- Genetic diseases
 - OMIM, GeneCards, GeneReviews
 - Genes and Disease
- Genetic tests
 - Geneclinics, EddNal
- SNPs
 - (dbSNP)

EMBL Outstation
European Bioinformatics Institute

Medical terminology and coding systems

- ICD
- SNOMED
- UMLS
- MeSH
- LOINC
- GALEN

info**gen**med



Supporting clinical pathways

- Users start the interaction at a familiar entry point (symptom, organ, drug, pathology), then navigating into deeper levels of detail (disorders & mutations, single nucleotide polymorphisms, etc.), walking through a net of biomedical relevant conceptual links.
- It is the system that autonomously retrieves and relates data for the several concepts, i.e., data sources.

Expected achievements

- Methods and tools for the integration of clinical and genetic data from heterogeneous remote databases
- A vocabulary server to combine existing terminology systems in Medicine and Genetics
- Novel framework for clinicians to locate, search, access, retrieve and use genomic information in patient care

Summing up

- Medical and bioinformatics need to cooperate to build tools able to access and relate clinical and genetic data
- INFOGENMED aims to facilitate the seamless integration of medical and genetic information, through an easy to use, Web-based environment, tailored to the health professionals.
- A measure of the success of the system will be it ability to support clinical pathways, autonomously retrieving and linking semantic related concepts.

BioEng 2003 | Fundação Calouste Gulbenkian | 2003.06.26-27

On the requirements of biomedical information tools for health applications: the INFOGENMED case study

Ilídio C. Oliveira¹ (<u>ioliv@ieeta.pt</u>), José Luís Oliveira^{1,2}, Miguel Santos³, F. Martin-Sanchez⁴, A. Sousa Pereira^{1,2}

http://www.infogenmed.net